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Abstract
The imaginary part of the dielectric function of zinc-blende and wurtzite InN has
been calculated using a full-potential linearized augmented plane wave method.
We show that the exchange potential of Engel and Vosko gives an insulating
ground state for both structures. The real part of the dielectric function has been
obtained from the Kramers–Kronig dispersion relations, assuming a quasi-
particle band-gap correction according to Bechstedt and Del Sole. We have
found that it is necessary to have a good account of the band gap in order to
derive the low-frequency optical properties. We present the longitudinal as well
as the transverse components in wurtzite InN, showing that the anisotropy is
small.

1. Introduction

InN is the least studied of the group III nitrides, primarily because the band gap is about 2 eV,
and semiconductor technology already exists for this part of the electro-magnetic spectrum.
However, the material is suitable for alloying with GaN and AlN. Knowledge of the optical
properties of InN is of great importance for future technological applications [1]. Theoretically,
one can investigate the optical properties by means of electronic structure calculations, which
normally are based on the local density approximation (LDA) or the generalized gradient
approximation (GGA). However, it has been found that both the LDA and GGA describe InN
as metallic [2]; this results in an incorrect low-frequency dielectric function.

In the present work we perform calculations of the electronic structures of zinc-blende
(zb) and wurtzite (wz) InN, using two different LDA exchange-correlation potentials. The
exchange-correlation potential of Perdew and Wang (PW) [3] gives a metallic ground state,
whereas using the exchange potential of Engel and Vosko (EV) [4] a semiconductor phase
is found for both crystal structures, although the band gap is underestimated. The band gap
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has been improved according to a quasi-particle correction. We present the partial density-
of-states (DOS) as well as the dielectric function. Furthermore, we also investigated the
effects on the low-frequency dielectric function due to the inclusion of electron–optical phonon
interactions.

2. Computational method

The computational method is based on a relativistic, full-potential linearized augmented plane
wave (FPLAPW) method [5]. We have chosen the experimental values of the lattice constants
and the internal lattice parameter [6]. The exchange-correlation potential is treated within the
LDA using the potential of PW [3]. Since this potential gives a metallic ground state for InN,
we have also used the GGA exchange potential of EV [4], and we show that this potential
produces a non-zero band gap.

The applied basis set consists of about 450 (750) plane waves in the interstitial region for
the zb (wz) structure. In the atomic regions, the basis set consists of spherical harmonics with
azimuthal quantum number l � 12 and a non-spherical contribution with l � 4. The charge
density is constructed of the plane waves and spherical harmonics with l � 6, and a k-space
matrix of 300 k points in the first Brillouin zone. Since calculations of the optical properties
require a more dense k-space matrix, we use 6000 (7000) k points for the zb (wz) structure in
the calculations of the dielectric function.

The imaginary part of the dielectric function, ε2(ω), in the long-wavelength limit, is
obtained directly from the electronic structure using the joint DOS and the optical matrix
overlap. The real part of the dielectric function, ε1(ω), is calculated from the Kramers–Kronig
dispersion relations. For the hexagonal structure, the longitudinal (‖) and the transverse (⊥)
dielectric functions were calculated separately, where the longitudinal direction is along the
c-axis.

3. Results

3.1. Energy band gap

The LDA/GGA is known to underestimate the band gap Eg for semiconductors. Earlier
published calculations on InN show a metallic ground state (various calculations are presented
in [2]). Using the PW potential, we also obtained a zero band gap for both zb- and wz-InN.
However, the EV potential gives Eg = 0.15 eV in zb-InN and 0.36 eV in wz-InN. The value of
the band gap for wz-InN is much too low compared to the experimental value of 2.11 eV [6].
To the best of our knowledge there are no experimental values for Eg in zb-InN. Because of
the incorrect band gap one cannot guarantee that the calculations yield an accurate dielectric
function. However, it has been shown by Del Sole and Girlanda [7] that the LDA combined
with the scissors-operator approximation describes the optical spectrum rather well. We have
therefore made an estimate of the correction �g to the band gap by using the quasi-particle
method proposed by Bechstedt and Del Sole [8]. Their model for the correction is based on the
difference in self-energies obtained from the LDA and the GW approximation. The correction
is given by

�g = e2qT F

2πε(0)

∫ ∞

0

1

1 + t2
((1 − αp)f (qT F rAt) + (1 + αp)f (qT F rBt))2 dt (1a)

f (x) = 1 − 10x2/3 + x4

(1 + x2)6
rA = a

4π1.6
rB = a

4π1.8
(1b)
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Figure 1. Partial DOS for (a) an In atom in zb-InN, (b) a N atom in zb-InN, (c) an In atom in
wz-InN, and (d) a N atom in wz-InN, obtained from the EV potential. The full, dashed, and dotted
curves represent s-, p-, and d-like states, respectively. The band-gap correction is included, and the
zero of the energy scale is set at the valence band maximum.

where qT F is the Thomas–Fermi wavenumber, ε(0) is the static dielectric function and αp

is the polarity of the interatomic interaction [8, 9], calculated to be 0.767 for both crystal
structures. The correction was derived for cubic structures with lattice constant a and a scalar
dielectric function. We have used the above equation also for the wz structure, taking the
average dielectric function ε(0) = [2ε⊥(0) + ε‖(0)]/3, a = 4/

√
3 times the average distance

between the nearest neighbours, and in conjunction with the calculated values of the static
dielectric function obtained from the present FPLAPW calculation (see section 3.3).

With the correction, the calculated band gap is greatly improved, but is still underestimated.
This is in contrast to the case of GaN and AlN, where the corresponding correction leads to
good agreement between calculation and experiment [10, 11]. The corrected band gap in zb-
InN is Eg + �g = 1.03 (0.59) eV and in wz-InN Eg + �g = 1.39 (0.67) eV for the EV
(PW) potential. Since the FPLAPW calculation with the PW potential gives a metallic ground
state, the correction was obtained with an estimate of the low-frequency limit of the dielectric
function.
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Figure 2. Imaginary part (a) and real part (b) of the dielectric function in zb-InN, using the
EV potential (full curves) and the PW-potential (dotted curves). Imaginary part (c) and real part
(d) of the dielectric function in wz-InN, calculated with the EV-potential, where full and dashed
curves represent the transverse and longitudinal directions, respectively. The band-gap correction
is included.

3.2. DOS

The calculated partial DOS for the s-, p-, and d-like states for zb-InN and wz-InN is presented
in figure 1, including the band-gap correction. From figure 1 one can observe that the valence-
band maximum is dominated by the p states of the N atoms. There is a relatively strong
contribution of the d states on the In site, compared to that found in GaN [10]. The conduction-
band minimum is almost equally predominated by s and p states.

3.3. Dielectric functions

The complex dielectric function ε(ω) = ε1(ω)+iε2(ω) is presented in figure 2. The imaginary
part is obtained directly from the electronic structure calculations, and the onset for absorption
has been shifted by �g . From the result, the real part ε1(ω) is determined using the Kramers–
Kronig dispersion relation. Another way of taking into account the gap correction would be
to shift the conduction bands before calculating ε2(ω). However, good arguments have been
given that it is more appropriate to add the shift to ε2(ω) for LDA calculations [7], and therefore
that method has been applied.
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The electronic structure calculations do not include electron–phonon interactions.
However, in polar materials optical phonons play an important role in the low-frequency
dielectric function. The screening from the electron–optical phonon (superscript ep)
interaction can be taken into account through a delta function in ε2(ω) at the transverse phonon
frequency ωT O [12]:

ε
ep

2 (ω) = δ(ω − ωT O)πε1(∞)
(ω2

LO − ω2
T O)

2ωT O

(2)

where ε1(∞) is the ‘high-frequency’ dielectric constant, i.e. the static dielectric constant when
the electron–optical phonon interaction is excluded. We will use experimental values [1] of
the optical phonon energies: h̄ωT O = 59.3 meV, h̄ωLO = 86.0 meV in wz-InN, and assume
the same values for zb-InN.

By adding ε
ep

2 (ω) to ε2(ω), still including �g , and thereafter calculating ε1(ω) through
the Kramers–Kronig dispersion relation, we obtain a more realistic dielectric function at low
frequencies. The influence of the electron–optical phonon interactions on ε1(ω) is shown in the
insets of figure 2. In table 1 we present the static ε1(0) and the high-frequency ε1(∞) dielectric
constants. The anisotropy of the dielectric function is very small in wz-InN. When both the
phonon contribution and the band-gap correction are neglected, we obtain ε1(∞) = 8.74
(12.91) for zb-InN and ε1,⊥(∞) = 7.47 (11.63) for wz-InN using the EV (PW) potential.
Thus, the effects of the band-gap correction are strong in InN.

Table 1. The static ε1(0) and high-frequency ε1(∞) dielectric constants obtained from the EV and
the PW potentials.

PW EV

zb-InN
ε1(0) 10.24 7.51
ε1(∞) 8.88 6.51

wz-InN
ε1,⊥(0) 9.51 6.72
ε1,‖(0) 9.41 6.73
ε1,⊥(∞) 8.21 5.87
ε1,‖(∞) 8.11 5.88

4. Conclusions

We have calculated the dielectric function ε(ω) = ε1(ω) + iε2(ω) of zb- and wz-InN, using
a FPLAPW method. Although we use different exchange-correlation potentials, the resulting
dielectric functions are similar in the high-frequency regime. It is however crucial to have a
correct treatment of the band gap and to include screening of the optical phonons for calculating
the low-frequency optical properties. We calculated the longitudinal and the transverse parts
of the dielectric function separately, showing that the anisotropy is small in wz-InN.

We have shown that the exchange potential of EV gives non-metallic ground states for
both zb- and wz-InN, although the band gap is underestimated. Even with the quasi-particle
band-gap correction, the calculated band gap is too small. The real part of the dielectric
function was determined with the correction.
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